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Abstract: Rock cutting and rock penetration are typical problems in civil, mining, petroleum, and geothermal engineering disciplines. They
involve dynamic fracturing and fragmentation of rock, high-speed movements of a cutter/impactor, and complex dynamic contacts between
the cutter/impactor and the rock. In this study a new three-dimensional (3D) coupled approach is developed to address these problems. The dis-
tinct lattice spring model (DLSM) is used to simulate the dynamic fracturing process of the rock, and the discontinuous deformation analysis
(DDA) is adopted to model the high-speed motion of the cutter/impactor. An explicit-implicit coupling scheme is developed to bridge DLSM
and DDA. Moreover, to take account of interaction between DLSM and DDA, a 3D simplex sphere-to-block contact method is introduced.
Finally, a number of numerical examples are conducted to verify the implementation of the coupled approach and its ability to model rock cut-
ting and rock penetration problems.DOI: 10.1061/(ASCE)GM.1943-5622.0000754.© 2016 American Society of Civil Engineers.
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Introduction

Rock cutting and rock penetration involve dynamic fracturing of
rock, high-speed motion of the cutter/impactor, and complex inter-
action between the cutter/impactor and the rock. There are three
available approaches to study these problems: experimental
(Kaitkay and Lei 2005; Glowka 1989; Yin et al. 2014), analytical
(Nishimatsu 1972; Detournay et al. 2008; Hughes 1984; Li and
Chen 2003; Li et al. 2008), and numerical (Liu et al. 2002; Cho
et al. 2010; Ma et al. 2011). The experimental approach can provide
physical insights into the behavior of rock cutting and rock penetra-
tion. However, due to the expense and time involved in model con-
struction, it is usually impracticable to conduct many tests and
assess sensitivity of behavior to model and rock parameters.
Moreover, to perform these tests under laboratory conditions, some
specifications, e.g., the size of rock model specimen and the geome-
try of the loading device, have to be simplified and scaled, which
may introduce uncertainties in how the results apply to real prob-
lems. These limitations constrained the experimental approaches to
be used for research rather than a predictive tool of guiding the
actual rock cutting/penetration operation. Analytical models can
provide useful insights into the relationship between basic rock
mechanical parameters (e.g., elastic modulus and compressive

strength) and the final cutting/penetration results (e.g., cutting
volume/penetration depth). Nevertheless, these analytical equations
can only be derived under simplified loading conditions and usually
ignore the nonlinear stress-strain relationship, rock heterogeneity,
and dynamic failure processes. With improvement of modern com-
puters and computing power, numerical modeling techniques pro-
vide a very promising solution to the study of rock cutting and pene-
tration because they do not suffer from the same limitations as the
experimental and analytical approaches.

Many numerical methods, e.g., the FEM, the boundary element
method (BEM), the discrete element method (DEM), and the
smoothed particle hydrodynamics (SPH), have been applied to
study rock cutting and/or rock penetration problems (Table 1).
These methods can be classified as either continuum-based methods
or discontinuum-based methods (Jing 2003). For most continuum-
based methods failure of rock is modeled using the element/particle
degradation technique (Hansson and Skoglund 2002; Gong et al.
2006; Cho et al. 2010; Ma et al. 2011) or the crack growth technique
based on linear fracture mechanics (Guo 1990; Ingraffea 1987). The
cutter/impactor is treated as a boundary condition or another FEM
model. Interaction between the rock and the cutter/impactor is
handled by sharing common nodes (Ma et al. 2011) or contact treat-
ment between the rock and the cutter/impactor (Cho et al. 2010).
The main shortcoming of the continuum-based approach is its
unsuitability for dealing with complete detachment and large-scale
fracture opening during postfailure of the rock. Conversely the
discontinuum-based method is good at simulating the complex me-
chanical responses of the rock during fracturing and fragmentation
(Kusano et al. 1992; Moon and Oh 2012). In the discontinuum-
based approach the cutter/impactor is usually treated as another
DEM model, a wall element, or a clumped particle. Interaction
between the cutter/impactor and the rock is handled as a contact
problem. Treating the cutter/impactor as a DEM model is realistic;
however, the computational cost is usually very high. Using the
wall element can overcome this shortcoming. Nevertheless, it can
only apply to velocity loading and is unable to consider the kine-
matic interaction between the rock and the cutter/impactor. The par-
ticle clumping technique is a compromise solution in which a group
of particles [sharing the same degrees of freedom (DOFs)] are
attached and represent the cutter/impactor. One major shortcoming

1Professor, State Key Laboratory of Hydraulic Engineering Simulation
and Safety, School of Civil Engineering, Tianjin Univ., Tianjin 300072,
China (corresponding author). E-mail: gaofeng.zhao@tju.edu.cn

2Professor, State Key Laboratory of Hydraulic Engineering Simulation
and Safety, School of Civil Engineering, Tianjin Univ., Tianjin 300072,
China.

3Associate Professor, Centre for Infrastructure Engineering and
Safety, School of Civil and Environmental Engineering, Univ. of New
South Wales, Sydney, NSW 2052, Australia.

4Professor, Dept. of Civil Engineering, Monash Univ., Building 60,
Clayton, VIC 3800, Australia.

Note. This manuscript was submitted on November 20, 2015;
approved on June 7, 2016; published online on August 17, 2016.
Discussion period open until January 17, 2017; separate discussions must
be submitted for individual papers. This paper is part of the International
Journal of Geomechanics, © ASCE, ISSN 1532-3641.

© ASCE E4016015-1 Int. J. Geomech.

 Int. J. Geomech., E4016015 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
W

is
co

ns
in

-M
ilw

au
ke

e 
on

 0
8/

19
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000754
mailto:gaofeng.zhao@tju.edu.cn


of the discontinuum-based approach is a proper calibration of the
micromechanics parameters required to obtain reasonable results.
A coupled discontinuum-continuum approach takes advantage of
the continuum-based and discontinuum-based methods while
avoiding these shortcomings (Munjiza 2004; Mahabadi et al.
2012). For rock cutting and penetration problems other coupled
approaches have also been developed (Onate and Rojek 2004)
in which the rock is simulated using the DEM, and the cutter/
impactor is treated as a FEM. In the coupled FEM/DEM approach
(Onate and Rojek 2004) both the FEM and DEM are solved ex-
plicitly. The coupling between the FEM and DEM is realized
through the contact between particles (DEM) and the three-
dimensional (3D) cutter/impactor (FEM). Implementing this
coupled FEM/DEM approach into a computer code usually
requires complex routines. Moreover, treating the cutter/impactor
as a 3D FEM model is computationally costly due to many extra
DOFs needed for a realistic 3D cutter/impactor. Because an
explicit solution is used for the FEM model, the time step of the
coupled model is also influenced by the mesh size and elastic pa-
rameters of the cutter/impactor. For some cases, e.g., rock cutting
with a very rigid cutter, the time step has to be very small to guar-
antee numerical stability of the cutter adding to the computational
inefficiency.

In this work a new coupled approach is developed in which the
rock is handled using the distinct lattice spring model (DLSM)
(Zhao et al. 2011). The reasons for selecting DLSM as the discon-
tinuum-based part are (1) it can directly use macroscopic parame-
ters without requiring the calibration process, (2) it uses only half of
the DOFs compared with DEM, and (3) parallelization of the algo-
rithm is relatively simple (Zhao et al. 2013). The discontinuous de-
formation analysis (DDA) (Shi 1988; Shi and Goodman 1985) is
adopted to model the cutter/impactor, which provides advantages
through its large deformation capability and its suitability to accom-
modate large time steps. Because both 3D DDA (Jiang and Yeung
2004; Yeung et al. 2007) and DLSM have been well developed the-
oretically, the main contribution of this work is to couple them and
solve a range of rock cutting and penetration problems. Three tech-
niques are developed further in this paper: (1) the simplex represen-
tation of the cutter/impactor as a group of 3D triangles, (2) a
simplex 3D particle-block contact treatment, and (3) an explicit-
implicit coupling scheme to integrate DLSM (explicit) and DDA
(implicit). The paper is organized as follows. First, the basic princi-
ple of DLSM is described. Then formulations of 3D DDA adopted
in this work are presented. Next the coupling techniques are

introduced. Finally, a newly developed DDA-DLSM is demon-
strated through a number of numerical examples.

TheModel

DLSM

As shown in Fig. 1(a), in DLSM the rock is represented as a group
of mass particles linked by spring bonds made up of normal and
shear springs. The rock fracturing and failure process is controlled
by bond failure described from the corresponding constitutive
model for these springs [see Fig. 1(b)]. In model preparation, spring
bonds are formed when the gap between two particles is smaller
than a prescribed threshold value. The system equation of DLSM is
given as

½K�dþ ½C� _d þ ½M�€d ¼ FðtÞ (1)

where d = particle displacement; _d = particle velocity; €d = particle
acceleration; ½K� = stiffness matrix; ½M� = lumped mass matrix;
½C� = damping matrix; and FðtÞ = external force. The explicit cen-
tral finite-difference scheme is adopted to solve Eq. (1).

The calculation cycle of DLSM is as follows. First, update the
particle positions from the prescribed displacements or calculated
displacements from the previous step. Given the updated particle
displacements, new contacts and broken bonds are detected.
Following this, the particle forces are calculated from spring bonds
and contacts according to the force-displacement relationship as
shown in Fig. 1(b). Finally, the particle velocity is updated as

_d
tþDt=2ð Þ
i ¼ _d

t�Dt=2ð Þ
i þ

P
F tð Þ
j

mp
Dt (2)

where _d
ðtþDt=2Þ
i presents the particle velocity at t þ Dt=2; _d

ðt�Dt=2Þ
i

presents the particle velocity at t � Dt=2; mp = particle mass,P
FðtÞ
j = sum of contact forces acting on the particle i including

external forces from boundary conditions and gravity; and Dt is
the time step. Finally, the particle displacements are obtained as

dðtþDtÞ
i ¼ dðtÞi þ _d

ðtþDt=2Þ
i Dt (3)

where dðtþDtÞ
i is the particle displacement at t þ Dt; _d

ðtþDt=2Þ
i is the

particle velocity at t þ Dt=2; and dðtÞi is the particle displacement at t.

Table 1. Numerical Methods Used for Rock Cutting and Rock Penetration Problems

Literature Topic Method Dimension

Modeling technique

Rock Interaction Cutter/impactor

Ingraffea (1987) Cutting FEM (implicit) 2 Fracture mechanics Common node FEM
Guo (1990) Cutting BEM (implicit) 2 Fracture mechanics None Boundary condition
Kusano et al. (1992) Penetration DEM (explicit) 2 Bond failure Contact DEM
Liu et al. (2002) Cutting FEM (implicit) 2 Element degradation Common node FEM
Hansson and Skoglund (2002) Penetration SPH (explicit) 2 Particle degradation Contact FEM
Onate and Rojek (2004) Cutting and penetration DEM-FEM (explicit) 3 Bond failure Contact FEM
Gong et al. (2006) Cutting DEM-FDM (explicit) 2 None Boundary condition
Zhou (2009) Penetration DEM (explicit) 3 Bond failure Contact DEM (clump particle)
Shiu et al. (2009) Penetration DEM (explicit) 3 Bond failure Contact DEM (clump particle)
Cho et al. (2010) Cutting FEM (explicit) 3 Element degradation Contact FEM
Ma et al. (2011) Cutting FEM (implicit) 2 Element degradation Common node FEM
Moon and Oh (2012) Cutting DEM (explicit) 2 Bond failure Contact Wall element
Zhou (2013) Cutting FEM (explicit) 3 Element degradation Contact FEM
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The relative displacement of a bond connecting particle i and
particle j is written as

dij ¼ dj � di (4)

When the normal unit vector of the bond pointing from particle i
to particle j is defined as n ¼ ðnx; ny; nzÞT then the normal force of
the bond is

Fn
ij ¼ knðdij � nÞn (5)

where kn = stiffness of the normal spring. In DLSM, a multibody
shear spring was introduced to address the noncentral interaction
arising from the bond’s shear deformation

d̂
s
ij ¼ ½�e�bondnl� ðð½�e�bondnlÞ � nÞn (6)

where ½�ɛ�bond ¼ ½�ɛ�i þ ½�ɛ�j=2 is the local approximated strain of the
bond; and ½�ɛ�i and ½�ɛ�j = local approximated strains at the two par-
ticles. The local approximated strains of the particles are calculated
from particle displacements within a particle cluster using a least-
squares method. Given the shear displacement the corresponding
shear force is

Fs
ij ¼ ksd̂

s
ij (7)

where ks = stiffness of the shear spring.
To solve static problems by DLSM, mechanical damping is

adopted for which Eq. (2) becomes

_d
tþDt=2ð Þ
i ¼ _d

t�Dt=2ð Þ
i

þ
X

F tð Þ
j � ca

����XF tð Þ
j

����sgn _d
t�Dt=2ð Þ
i

� �( )
Dt
mp

(8)

where ca = damping constant (with a default value of 0.8).
Eqs. (1)–(8) make up the main framework of DLSM. More

details on implementation and verification of DLSM can be found
in Zhao et al. (2011).

DDA

The DDA (Shi 1988; Shi and Goodman 1985) is an implicit DEM.
There are four essential components of DDA: (1) a deformation func-
tion of the block, (2) contact detection between blocks, (3) a system
equation derived from an energy minimization principle, and (4) sim-
plex integration. In this work the cutter/impactor is represented as a
tessellation of surface triangles using the simplex concept of DDA
(Fig. 2). Representing a solid as a tessellation of triangles is a classical
method used in computer graphics, e.g., the stereo lithography (STL)
file for formatting and recording 3D objects in computer science. In
this work the tessellated triangle surface is extracted from a 3D FEM
model. The normal direction of each triangle is outside of the domain
(see Fig. 2). The deformation of the block is represented as

u
v
w

0
@

1
A ¼ ½T�D (9)

where ½T� = deformationmatrix of the block; andD = general DOFs.

Fig. 1. Computational model and constitutive model of DLSM (data from Zhao et al. 2011): (a) particle model; (b) constitutive model

Fig. 2. Representation of a 3D object as triangles in 3DDDA
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Theoretically a displacement function of any order can be used
to approximate the block’s deformation (Beyabanaki et al. 2010).
The corresponding DOFs are made up from the translation displace-
ment, rotation, simple strain, and other high-order terms. In this
work, because rock fracturing is the main concern, the DDA
block’s deformation is assumed to be ignorable due to its high
rigidity; therefore, the deformation function of the DDA block
can be simplified as the incomplete first-order displacement
function used in sphere-based DDA (Zhao 2000; Beyabanaki and
Bagtzoglou 2015)

u
v
w

0
@

1
A ¼ ½Tðx; y; zÞ�D

¼
1 0 0 0 Z �Y X
0 1 0 �Z 0 X Y
0 0 1 Y �X 0 Z

2
4

3
5

dx
dy
dz
rx
ry
rz
ɛr

0
BBBBBBBB@

1
CCCCCCCCA

(10)

where ðX; Y; ZÞ ¼ ðx� xc; y� yc; z� zcÞ; ðxc; yc; zcÞ = centroid of
the block; dx = translation in x direction; rx = rotation along x-axis
(terms for y and z defined similarly); and ɛr = radius strain
deformation.

From Eq. (10) the elastic potential in the block can be calculated
as

Pe ¼ Ð Ð Ð 1
2

ɛr ɛr ɛr
� � E

1� 2�

ɛr
ɛr
ɛr

0
@

1
Adxdydz

¼
ððð

1
2
ɛr

3E
1� 2�

ɛrdxdydz ¼ 1
2
Vɛr

3E
1� 2�

ɛr ¼ V
2
DT E½ �D

(11)

where

E½ � ¼

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0
3E

1� 2�

2
666666666666664

3
777777777777775

The block stiffness matrix is obtained using the energy minimi-
zation principle as

Kb½ � ¼

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0
3VE

1� 2�

2
666666666666664

3
777777777777775

(12)

where V = volume of the block, which is calculated using the 3D
simplex integration method; E = elastic modulus of the block; and �
is Poisson’s ratio.

For a time step ð0;DtÞ, where 0 � t � Dt, and for ½Dð0Þ� ¼
½0�; ½DðDtÞ� ¼ ½D�, the inertial force can be obtained as

fx

fy

fz

0
BB@

1
CCA ¼ �r

∂2

∂t2
u tð Þ

∂2

∂t2
v tð Þ

∂2

∂t2
w tð Þ

0
BBBBBBBB@

1
CCCCCCCCA

¼ �r T x; y; zð Þ� � ∂2

∂t2
D tð Þ

	 

(13)

Applying Taylor expansion to ½Dð0þ DtÞ� gives

D 0þ Dtð Þ½ � ¼ D 0ð Þ½ � þ Dt
1!

∂
∂t

D tð Þ½ �
����
t¼0

þ Dt2

2!
∂2

∂t2
D tð Þ½ �

����
t¼0

(14)

where
∂
∂t

D tð Þ½ �
����
t¼0

¼ _D 0ð Þ� �
is the initial velocity. Because

D½ � ¼ Dt _D 0ð Þ� �
þ Dt2

2!
∂2

∂t2
D tð Þ½ �

����
t¼0

(15)

it follows that

∂2

∂t2
D tð Þ½ �

����
t¼0

¼ 2
Dt2

D½ � � 2
Dt

_D 0ð Þ� �
(16)

The inertial energy of the block is written as

Pi ¼
ððð

r D½ �T T x; y; zð Þ� � ∂2
∂t2

D½ �dxdydz (17)

where r = density of the block. The inertial matrix and inertial
forces can be obtained using the energy minimization principle
as

Kin½ � ¼ 2r
Dt2

ððð
T x; y; zð Þ� �T T x; y; zð Þ� �

dxdydz (18)

Fin½ � ¼

�r

ððð
T x; y; zð Þ� �T T x; y; zð Þ� �

dxdydz
2
Dt2

Di½ � � 2
Dt

_Di 0ð Þ� �� �
(19)

The equation of point loading applied to the block is

½Ff � ¼ ½Tðx; y; zÞ�
fx
fy
fz

0
@

1
A (20)

where ðfx; fy; fzÞ is a concentrated force (either a contact force
from the rock or an external force) applied at a point (x, y, z) of
the block.

Equations for a fixed point are

½Ffix� ¼ p½Tðx; y; zÞ�T
u0
v0
w0

0
@

1
A (21)

© ASCE E4016015-4 Int. J. Geomech.
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½Kfix� ¼ p½Tðx; y; zÞ�T ½Tðx; y; zÞ� (22)

where p = penalty number that is calculated as bE (with b ¼ 40
used in this study).

The gravity force can be calculated as

½Fg� ¼ rV
gx
gy
gz

0
@

1
A (23)

where (gx, gy, gx) is the acceleration of gravity applied to the
model.

Assembling these equations produces the system equation
written as

ð½Kb� þ ½Kin� þ
X

½Kfix�Þ½D� ¼ ½Fin� þ ½Fg� þ
X

½Ff � þ
X

½Ffix�
(24)

The block movement ½D� can be obtained by solving the Eq. (24).
The 3D integration operation in Eqs. (18) and (19) is performed
using the simplex integration. Details on the original simplex inte-
gration can be found in the work of Shi (1988) and Jiang et al.
(2009). Here a set of equations specially developed for the triangle
tessellated DDA block are derived.

Simplex integration is one of the most distinct characteristics
of DDA. Divide and conquer is the fundamental principle of
simplex integration. There are two levels of division, (1) an
algebraic layer and (2) a geometric level. In the algebraic
layer the integration of a general polynomial function is per-
formed asððð

X

f ðx; y; zÞdX ¼
Xððð

X

Cix
mynzldX (25)

Unlike the Gauss integration, the simplex integration tries to cal-
culate the analytical integration of each polynomial component

separately. At the geometric level the integration domain is further
divided into a group of simplex domains (tetrahedron in 3D). The
subdomain has its own sign according to its topological condition.
In this work the block was represented as subdomains that are made
up from the surface triangles and the origin of coordinates (Fig. 3).
For each triangle ðxi; yi; ziÞi¼1;2;3 its signed volume (see Fig. 3) is
given as

Vi
s ¼

�x3y2z1 þ x2y3z1 þ x3y1z2 � x1y3z2 � x2y1z3 þ x1y2z3
6

(26)

According to the equations (after Shi 1988) the analytical inte-
gration of x, y, z, x2, y2, z2, xy, xz, and yz in the subdomain can be fur-
ther simplified as

six ¼
x1 þ x2 þ x3ð ÞVi

s

4
(27)

siy ¼
y1 þ y2 þ y3ð ÞVi

s

4
(28)

siz ¼
z1 þ z2 þ z3ð ÞVi

s

4
(29)

six2 ¼
x1x2 þ x1x3 þ x2x3 þ x1x1 þ x2x2 þ x3x3ð ÞVi

s

20
(30)

siy2 ¼
y1y2 þ y1y3 þ y2y3 þ y1y1 þ y2y2 þ y3y3ð ÞVi

s

20
(31)

siz2 ¼
z1z2 þ z1z3 þ z2z3 þ z1z1 þ z2z2 þ z3z3ð ÞVi

s

20
(32)

Fig. 3. Simplex integration scheme of 3DDDA
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sixy ¼
x1y2 þ x1y3 þ x2y3 þ x2y1 þ x3y1 þ x3y2 þ 2 x1y1 þ x2y2 þ x3y3ð Þð ÞVi

s

20
(33)

sixz ¼
x1z2 þ x1z3 þ x2z3 þ x2z1 þ x3z1 þ x3z2 þ 2 x1z1 þ x2z2 þ x3z3ð Þð ÞVi

s

20
(34)

siyz ¼
y1z2 þ y1z3 þ y2z3 þ y2z1 þ y3z1 þ y3z2 þ 2 y1z1 þ y2z2 þ y3z3ð Þð ÞVi

s

20
(35)

These equations enable simplex integration of a complete two-
order function and are enough to calculate the integration operation
in this work. Eqs. (26)–(35) can be easily implemented into a com-
puter code.

Coupling between DDA and DLSM

Fig. 4 shows the process for coupling DDA and DLSM. Each calcu-
lation cycle includes two time lines: one is for DLSM to update a
particle’s motion according to Newton’s second law, and the other
is for DDA to calculate the block displacement according to the
energy minimization principle. The coupling is realized through

exchange contact forces between the DDA block and the particle
model (see Fig. 4). More specifically, the influence the DDA block
has on DLSM is considered as a contact force. For DDA calcula-
tion, according to Newton’s third law, a reaction force is applied
to the block at the contact point. Therefore the sphere-block con-
tact is where the coupling is implemented. In this work the block
is represented as a tessellation of triangles. Instead of the complex
contact algorithm described in Beyabanaki and Bagtzoglou
(2015) or He et al. (2014), a simplified version is adopted, which
is where the concept of simplex integration is developed further.
The principle is to divide the contact between particles and the
block into elemental contacts between spheres and triangles
(Fig. 5). The center of the sphere is represented as Ps, and the tri-
angle is described from three points ðP1;P2;P3Þ. If there is a con-
tact between a sphere and a triangle then its normal is denoted as
nsfc and the overlap as dsf . The stiffness of the normal spring
linked to the particle is kn, meaning the contact force from the
block to the particle is given as

Fsf ¼ a2knnsfc d
sf (36)

where a is a coefficient depending on the contact type. The purpose
of a is to smooth the contact force when the sphere moves between
triangles. When contact between a sphere and a triangle is viewed
as contact area rather than a point, the contact stiffness should be
related to the effective contact area. Under this principle, for a
sphere-vertex (SV) contact, a is estimated as the ratio between the
corresponding angle of the triangle’s vertex u i [see Fig. 5(b)]
and 2p

a ¼ u i

2p
(37)

From a simple geometric analysis, for a sphere-edge (SE) con-
tact and a sphere-face (SF) contact, a is 0.5 and 1.0, respectively.
Additionally for SF contact there are two special conditions that
need to be considered [see Fig. 5(b)]. When the contact point is too
close to a vertex or an edge the contact coefficient needs to be modi-
fied as detailed next.

For a SF contact shown in Fig. 5(a) the first step is to calculate
the distance between the triangle and the sphere’s center using

bFS ¼ P1Ps


! � nF (38)

where nF = normal vector of the triangle. The contact detection is
performed only if bFS � 0. A potential contact point PSF

4 is then
obtained as

PSF
4 ¼ Ps � nFbFS (39)

If bFS < R then the following step is used to judge whether the
contact point falls inside the triangle:

Fig. 4. Explicit-implicit coupling scheme of DDA and DLSM
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DðP1;P2;P3Þ ¼ DðP1;P2;PSF
4 Þ þ DðP2;P3;PSF

4 Þ þ DðP3;P1;PSF
4 Þ
(40)

where Dð�Þ represents the calculation of the area of a triangle made
up from the three points inside ðÞ. If Eq. (40) is satisfied then the
contact is a SF type and its contact direction is given as

nsfc ¼ nF (41)
The contact overlap is calculated as

dsf ¼ R� bFS (42)

For a SF contact the coefficient a needs to be further deter-
mined according to arrangements shown in Fig. 5(b). If the
distance between a triangle vertex and the potential contact
point is smaller than a threshold value d SF ¼ bR (in this work
b ¼ 0:01), then a will be assigned to the corresponding value
for a SV contact of the triangle’s vertex. The same procedure is
applied for edges.

The SE contact type is considered when the contact does not sat-
isfy conditions necessary for it to be a SF type. For the example of
an edge made up from P1 and P2 the normal direction of a potential
SE contact is calculated as

nE ¼

P1Ps


!� P1P2



! � P1Ps


!� �

P1P2


!����P1P2


!��������P1Ps



!� P1P2


! � P1Ps



!� �
P1P2


!����P1P2


!����

����
(43)

If R�
����P1Ps


!� P1P2



! � P1Ps


!� �

P1P2


!����P1P2


!����

���� > 0 then the SE contact

is further assessed. The potential contact point is calculated as

PSE
4 ¼ Ps � P1Ps



!þ P1P2


! � P1Ps



!� �
P1P2


!����P1P2


!����

(44)

Fig. 5. Simplex 3D sphere-to-block contact scheme: (a) SF contact; (b) special conditions of SF contact; (c) SE contact; (d) SV contact

Fig. 6. Computational model of the two-box collision problem
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The potential contact point will be further assessed even further
if it is inside the edge. If it is inside the edge then the contact overlap
is calculated as

dsf ¼ R�
����P1Ps


!� P1P2



! � P1Ps


!� �

P1P2


!����P1P2


!����

���� (45)

For an SE contact, as is similar for a SF contact, if the distance
between the potential contact point and triangle vertex is smaller than
the threshold value then the corresponding amust also bemodified.

The SV contact can be dealt with easily. The contact normal and
overlap can be obtained as

nV ¼ PiPs


!����PiPs


!����

(46)

dsf ¼ R� jPiPs


!j (47)

An SV contact is only possible when dsf > 0. The sphere-block
contact presented in this work only considers the normal interaction
between DLSM and DDA. Shear contacts between a sphere and tri-
angles is more complex and will be worked out in the future.

The time step for a coupled DDA-DLSM analysis is determined
from the numerical stability requirement of DLSM because the time
step selection of the implicit DDA is more flexible and can be large.
In the following section a number of examples are conducted to ver-
ify the coupled DDA-DLSM, the contact treatment, and the numeri-
cal implementation.

Numerical Examples

Collision of Two Boxes

In this example, a collision problem will be solved using DDA-
DLSM. The model configuration is shown in Fig. 6. There are two
10� 10� 10-mm boxes, one represented by DDA and the other by
DLSM. The gap between the two boxes is 2 mm. The elastic moduli
of these two boxes are taken as 200 GPa and their Poisson’s ratios

Fig. 7. Collision process between two boxes predicted by DDA-DLSM [Note: The contour refers to the displacement in the Y-direction (in milli-
meters)]: (a) t = 0.00 ms; (b) t = 2.05 ms; (c) t = 2.85 ms; (d) t = 4.65 ms

© ASCE E4016015-8 Int. J. Geomech.

 Int. J. Geomech., E4016015 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
W

is
co

ns
in

-M
ilw

au
ke

e 
on

 0
8/

19
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



are taken to be 0.2563, representing a steel. The density of the
DLSM box is taken as r2 ¼ 7,900 kg/m3 and the density of the
DDA box is taken as r1 ¼ x r 2. The DDA block is assigned with
an initial velocity v1 = 1,000mm/s. According to the momentum
and energy equilibrium of the two-box system the velocity of the
DDA and DLSM boxes after collision v

0
can be obtained as

v
0
1 ¼ 1� m1=m2

1þ m1=m2
v1 (48)

v
0
2 ¼ m1 v1 þ v

0� �
m2

(49)

where m1 and m2 = masses of the DDA and DLSM boxes,
respectively.

Fig. 7 shows the collision process predicted by DDA-DLSM
when the two boxes have the same density (i.e., x ¼ 1:0). It can be
concluded that the coupling between DDA and DLSM is imple-
mented correctly. There are no contacts between DDA and DLSM
at the initial stage. Dynamic contacts are formed during the colli-
sion. The contour map of displacement along the y-direction of the
DLSM box during the collision can be further used to check imple-
mentation of the simplex contact. The symmetrical square contact
plane is represented as a group of triangles that do not have a sym-
metrical property (see Fig. 6). If the edge and vertex contact

Fig. 8. Velocity histories of two boxes predicted by DDA-DLSM

Fig. 9. Analytical and numerical results of the velocity exchange ratio (v 01/v1) and themass ratio (m2/m1)

© ASCE E4016015-9 Int. J. Geomech.
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coefficients are not properly treated then the deformation would not
be symmetrical, like that shown in Fig. 7. Therefore, because sym-
metry is clearly evident, the interaction between DDA and DLSM
was handled properly by the proposed simplex sphere-block contact
method.

The velocity histories of the DDA box and that of the center of
the DLSM box are plotted in Fig. 8 for quantitative comparison
with the analytical solution. General agreement is observed. The di-
vergent and vibration of the numerical prediction is caused by the

full 3D simulation of DDA-DLSM. Stress wave propagation and
reflection happens within the DLSM box causing a vibration to be
observed in the velocity history of the DLSM box.

To explore this problem further different densities for the DDA
box are considered. The ratio between the after-collision velocity
and the initial velocity of the DDA box is compared with the analyt-
ical prediction based on Eq. (48) (Fig. 9). When the mass of the
impact box is small the numerically predicted velocity is close to
the analytical solution. When the mass of the impact box is large the

Fig. 10. Computational model of the sliding box problem

Fig. 11. Sliding process of the DDA box predicted by DDA-DLSM: (a) t = 10 ms; (b) t = 50ms; (c) t = 90 ms; (d) t = 120 ms
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numerical prediction deviates from the analytical solution. The rea-
son is that when the mass is small the system is a DDA controlled
system (the DLSM box can be viewed as a rigid wall and the DDA
box as a semirigid body) close to the idealized system used to derive
Eq. (48). On other hand, when the DDA block mass is large, the
whole process is dominated by 3D stress wave propagation, and
reflection within the DLSM box and Eq. (48) is unable to give a
suitable predication. It is worth mentioning that different time steps
were used in these simulations, and the results were the same.

This example has verified the coupling cycle and contact treat-
ment of DDA-DLSM. However, for many problems, the contact
between DDA and DLSM will change dynamically along the shear
direction during simulation. In the following example a sliding box
problemwill be performed to illustrate how this can be dealt with.

Sliding Box

The model of a problem involving a box sliding on a table is shown
in Fig. 10. The table is made up from DLSM particles and has the
dimensions 50� 4� 30 mm. The box is represented by DDA trian-
gles and has the dimensions 25� 5� 10 mm. The DDA box is
placed just above the table. Because there is no shear contact
applied in the coupled DDA-DLSM, the sliding distance of the
DDA box can be written as

usl tð Þ ¼ 1
2
g sin uð Þt2 (50)

where t = sliding time; g = gravity acceleration (10 m/s2); and u =
inclination angle of the table.

The particle size of the table is 1 mm and the model is made up
of 600 particles. The material parameters of the two boxes are
selected to be the same as steel: elastic modulus of 200 GPa,
Poisson’s ratio of 0.2563, and density of 7,900 kg/m3. The simula-
tion time is 0.15 s and the time step is 1� 10−7 s. The total number
of calculation cycles is 1.5 million. Therefore, this example can also
check the numerical stability of DDA-DLSM during a long time
simulation problem.

The sliding process predicted by DDA-DLSM is shown in
Fig. 11. The DDA box is sliding under gravity and reaches the edge
of the table as expected. The process involves dynamic contact
detection between the table particles and the DDA triangles. This
figure can confirm that the dynamic detection and treatment are
implemented correctly. A comparison between the sliding distance
predicted by DDA-DLSM and the analytical solution is plotted in
Fig. 12. It shows that both stable and accurate results are obtained
by DDA-DLSM.

This and the previous example verify that the contact coupling
within DDA-DLSM has been done correctly. The two following
examples involve rock penetration and rock cutting andwill provide
further verification of other implementation aspects.

Rock Penetration

A rock penetration test is a classical test used in the protective
design of engineering structures. A high-speed impactor is sent
to a rock specimen, which breaks up during impact and penetra-
tion. Experimental tests may be conducted to study the failure
process of the rock (Seah et al. 2011) [Fig. 13(a)]. Seah et al.
(2011) also conducted a FEM numerical simulation of the prob-
lem using a HJC-concrete model (involving 20 parameters
including an erosion criterion). The FEM simulation result is
shown in Fig. 13(b).

In this example DDA-DLSM is used to simulate a similar rock
penetration test. As shown in Fig. 13(c) a steel impactor is assigned
with an initial velocity of 200 m/s. It will impact the target. The ma-
terial parameters of the steel are the same as in the previous section.
The rock material properties are elastic modulus of 40 GPa,
Poisson’s ratio of 0.2, and density of 2,700 kg/m3. The particle size
adopted is 0.01 m. There is only one failure parameter, the ultimate
tension deformation un

*, needed in the computational model. Fig. 13
(c) shows the side view of the computational model. The front view
is shown in Fig. 13(d). To investigate the influence of microstruc-
ture, two heterogeneous models are built [see Fig. 13(e and f)]. The
first is a random two-phase model made by assigning different ma-
terial properties to different particles randomly [see Fig. 13(e)]. The

Fig. 12. Sliding distance predicted by DDA-DLSM and the analytical solution
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second is a Voronoi-based model. The surface of a Voronoi cell is
assigned material parameters of the base material. The base material
made up about 80 and 20% for the first (random) and second
(Voronoi) models, respectively.

A parameter study on u*n is conducted first using the homoge-
nous model. Fig. 14(a) shows the failure pattern when u*n =
0.0001 m. The failure zone of the rock specimen’s back takes the
shape of a four-cornered star and is different from the experimental

Fig. 13. Experimental and FEM simulation results of the rock penetration (data from Seah et al. 2011) and DDA-DLSM computational models for
the problem: (a) experimental failure pattern (back) (data from Seah et al. 2011); (b) FEM simulation result (data from Seah et al. 2011); (c) side view;
(d) front view; (e) randommodel; (f) Voronoi model
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Fig. 14. Failure patterns of the rock specimen predicted by DDA-DLSM: (a) homogenous model (u*n = 0.0001 m); (b) homogenous model (u*n =
0.0010m); (c) randommodel (u*n1 = 0.0001 m, u*n2 = 0.0010m); (d) Voronoi model (u*n1 = 0.0001 m, u*n2 = 0.0010 m)
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observation [see Fig. 13(a)]. When the strength parameter u*n is set
as 0.0010 m, as shown in Fig. 14(b), no apparent failure is observed
although a bulking shell forms at the back. These two material pa-
rameters (u*n1 = 0.0001 m and u*n2 = 0.0010 m) are used to represent
the base material and enriched material within the heterogeneous
random and Voronoi models. As shown in Figs. 14(c and d) the fail-
ure patterns of the heterogeneous models are similar to the experi-
mental observation. Compared with the FEM results [Fig. 13(b)]
the Voronoi-based heterogeneous model using DDA-DLSM can
reproduce a more realistic failure pattern. The reason might be that
the dynamic failure of the rock specimen under impact penetration
is mainly controlled by the local tensional failure and the dynamic
contacts between fragments.

The beauty of discontinuum-based modeling is that experimen-
tal results can be fitted using a relatively simple mechanical model.

Once this fitting is done the influence of a range of geometric fac-
tors, which are difficult to study experimentally, can be investigated
numerically. For example, the two heterogeneous models shown in
Figs. 13(e and f) represent models with two different portions of
enriched material and different topological distributions. Through
numerical simulation the influence of topological distribution of the
enrichment and portion of the enrichment can be studied.

Fig. 15 shows the velocity histories of the impactor. For the ho-
mogenous model made of base material only the impactor would
penetrate the rock specimen completely, and the residual velocity is
about 150 m/s. For the homogenous model made of enriched
material only the impactor will be reflected at a velocity of about
−50 m/s. The outputs of random and Voronoi heterogeneous
models are in between the two homogenous model outputs, and the
residual velocity is about 50 m/s. The random heterogeneous model

Fig. 14. (Continued.)

Fig. 15. Histories of the impactor’s velocity predicted by DDA-DLSM

© ASCE E4016015-14 Int. J. Geomech.

 Int. J. Geomech., E4016015 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
W

is
co

ns
in

-M
ilw

au
ke

e 
on

 0
8/

19
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



has around 20% enrichment material, whereas 80% enrichment ma-
terial is used for the Voronoi model. However, the performance of
the random model is slightly better than the Voronoi model. This
indicates that the topological distribution of enrichment has more
weight than the portion each material makes up within the enrich-
ment. Also, it seems the random distribution of enrichment material
is more crucial than simply increasing its portion to achieve realistic
model outputs.

In this example, damping coefficients of DDA and DLSM are
set to be zero due to the very short simulation time considered
(less than 2 s). Overall, the DDA-DLSM is able to capture the
rock penetration process reasonably. Nevertheless, it still needs
further improvements and developments, particularly in its ability
to model shear failure, plastic deformation, damage accumula-
tion, and energy dissipation caused by viscous damping (Jiang
et al. 2013).

Fig. 16. Computational model of the TBM cutting problem: (a) front view; (b) side view

Fig. 17. TBM cutting process simulated by DDA-DLSM: (a) t = 0.1 ms; (b) t = 0.6 ms; (c) t = 1.4 ms; (d) t = 2.0 ms

© ASCE E4016015-15 Int. J. Geomech.

 Int. J. Geomech., E4016015 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
W

is
co

ns
in

-M
ilw

au
ke

e 
on

 0
8/

19
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



TBM Rock Cutting

In this example a TBM rock cutting problem is simulated. A full 3D
model of a TBM cutter is used (Fig. 16). Unlike the FEM simulation
of Cho et al. (2010) only the surface triangles for the cutter are
adopted in this study. Moreover, there are only 7 DOFs for the cut-
ter in DDA-DLSM. The radius of the cutter is 214 mm, thickness is
80 mm, and the width of the cutter head is 14 mm. The rock block’s
dimension is 100� 100� 30 mm, which is made up from 300,000
particles with a diameter of 1 mm. The material properties of the
cutter are elastic modulus of 120 GPa and Poisson’s ratio of 0.25.
The density of the steel cutter and rock are 7,900 kg/m3 and
2,600 kg/m3, respectively, which are scaled 1,000 times in the simu-
lation to allow a large time step (�33 times) to be used as a prelimi-
nary solution to overcome the computational limitation of our cur-
rent program. It should be mentioned that this increase of density
will cause the change of inertia force and might influence the simu-
lation results. A parallel code will be developed to tackle this prob-
lem in future work. The ultimate deformation of the normal and
shear springs are taken to be 0.00015 and 0.001mm, respectively.
The boundary conditions applied to the block are free surfaces
except the top one, which is fixed in its normal direction. The TBM
cutter will move along the z-direction while also rotating around its
central axis. The angular velocity applied is v ¼ v=R, where v =
cutting velocity; and R = radius of the TBM cutter.

The failure process of the rock specimen under TBM cutting is
shown in Fig. 17. The damage zone expands in the direction of
movement of the TBM cutter. The typical branch fractured zone is
observed, which is similar with the experimental observation of
Cho et al. (2010).

In this example the influence of cutting velocity is studied to
highlight the ability of DDA-DLSM to model rock cutting prob-
lems. The damage volume ratio versus cutting distance under differ-
ent cutting velocities is shown in Fig. 18. It can be seen that slow
cutting results in a more damaged specimen. Fast cutting will results
in less damage. This is in agreement with classic experimental
observations from rock dynamic testing. For example, the strength
and fracture toughness of rock are usually higher and the extent of
damage usually lower under higher strain/loading rates (Dai et al.

2010). Through numerical simulation this can also be observed, in
particular in a TBM rock cutting process. This type of numerical
simulation may be used to optimize the operation speed and energy
efficiency of rock cutting.

Conclusions

A coupled DDA-DLSM approach is developed for rock cutting and
rock penetration problems. The cutter is modeled as a surface of tes-
sellated triangles using the simplex concept of DDA. The motion of
the cutter/impactor is further described by the system equation of
DDA. The rock specimen is modeled as a group of particles linked
through springs. A coupling procedure with a 3D contact method is
developed to integrate DLSM and DDA. By using a number of nu-
merical examples the correctness of the proposed coupling technique
and implementation of DDA-DLSM are verified. Results indicate that
DDA-DLSM is a promising tool for studying and optimizing rock cut-
ting and rock penetration problems. Further research will focus on
more advanced constitutive model development for DLSM and more
complete contact treatment between DLSM andDDA.
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